Выдающиеся достижения и открытия Бутлерова в химии. Объясните слова бутлерова который задолго до открытия


Выдающиеся достижения и открытия Бутлерова в химии. - Разное - Статьи

Содержательный «Отчет о странствии по чужим краям в 1857-1858 годах» предоставил Бутлеров А.М. Совету Казанского университета. Отчет представлял собой научный труд, так как являлся критическим анализом того, что он наблюдал и замечал.

Конечно, продвижение сайта в поисковых системах намного проще, чем труды ученых, но также требует научного подхода. Из отчета Бутлерова можно узнать, что в Париже он занимался химией. В лаборатории известного профессора А.Вюрца он скрупулезно изучал влияние алкоголита натрия на йод, а также алкоголита натрия на йодофром. Данные реакции изучались и до него, но именно Бутлеров одним из первых сумел вывести йодистый метилен – вещество, плотность которого 3,32 кг/м^3. Открытие Бутлерова находит обширное применение у минералогов. Йодистый метилен он превратил в исходный материал для разложений большинства органических соединений.

Исходя из опытов с йодистым метиленом и щавелево-кислым серебром, Бутлерову удалось получить так называемый оксиметилен, который по своим свойствам при нагревательном процессе превращается в простейший альдегид, а при охлаждении переходит обратно в полимерное состояние. Значение этого соединения высоко потому, что Бутлерову в 1861 г. удалось с помощью действия известковой воды на оксиметилен доказать возможность получения сахаристого начала искусственным путем, впоследствии получившим название метиленитана. Такое открытие повело за собой ряд других исследований свойств химических соединений.

Александр Михайлович писал, что естественность есть необходимость умственных выводов, следующих из фактического прогресса науки. Данные выводы объясняют то, что все взгляды, встречные Бутлеровым в Западной Европе представляли для него немного нового. Он был практически убежден в том, что если предскажет в ближайшем будущем совмещение спорных воззрений и избавление их от воображаемого облачения, в которых они пока находятся и которые часто скрывают своё истинное обличие, свой точный смысл.Бутлеров в 1860 году получил сложное азотосодержащее вещество – гексаметилентетрамин путем действия аммиака на диоксиметилен. Это вещество, названное уротропин, находит широкое применение в медицине и в химическом производстве. В следующем году он сделал не менее значимое исследование: при воздействии известкого раствора на диоксиметилен Бутлеров самый первый из химиков получил сахаристое вещество путем синтеза.

Все его эксперименты помогли оформить его гипотезы воедино, в одну исключительную теорию. Он пришел к выводу, что химики имеют возможность выражать строение органических веществ точными формулами.

Еще с середины шестидесятых годов укрепившиеся выражения в химии, вроде «Бутлеровская школа»,»Бутлеровское направление» сохранились и до сего времени. Зовется это направление по праву Бутлеровским, потому что выдающийся химик стал одним из первых основавших научный принцип – «химическое строение». Так, данный принцип был применяем всесторонне знатоками химических наук, и кроме того, Бутлеров своим открытием положил основу обновленного преподавания химии и научных работ.

www.himhelp.ru

Основные положения теории Бутлерова А. М. Основные положения теории химического строения Бутлерова

Общепризнанные основные положения теории Бутлерова считаются фундаментом современной химии. Ученый первым объяснил особенности строения веществ. Он подробно изучил природу взаимосвязей атомов.

Предпосылки появления теории

Александр Бутлеров стал основоположником новой теории как раз тогда, когда в науке накопилось множество вопросов, на которые ученые не могли найти ответов. Например, объяснения требовали явления валентности и изомерии. Кроме того, химики продолжали спорить о том, как правильно записывать химические формулы. Бутлеров внес ясность в этот вопрос. Он доказал, что формулы должны отражать строение вещества.

Помимо этого, существовало несколько концепций, которые были противоположны взглядам, высказанным Бутлеровым. Это была теория радикалов. Ее основоположником стал Йенс Берцелиус. Он утверждал, что в молекулах есть особые элементы – радикалы, которые переходят из одного вещества в другое. Также существовала теория типов. Ее сторонники считали, что все сложные вещества являются производными простых неорганических веществ – воды, водорода, аммиака и т. д. Все эти концепции противоречили друг другу. Науке была необходима теория, которая поставила бы все на свои места.

основные положения теории бутлерова

Новые идеи Бутлерова

Александр Михайлович Бутлеров (1828–1886 гг.) был одним из выдающихся химиков своего времени. Он много занимался теоретическими вопросами своей науки. В 1858-м ученый выступил на одном из заседаний Парижского химического общества. Тогда же впервые из его уст прозвучали основные положения теории Бутлерова.

Исследователь употребил в своем докладе новые термины, которые позже закрепились в международной науке. Например, именно он стал автором понятия структуры соединений. Ученый считал, что строение разных веществ позволяет отнести их к одним группам (в частности, это метан, хлороформ, метиловый спирт и т. д.).

Исследование синтеза веществ

В 1861 году в опубликованном докладе «О химическом строении вещества» были сформулированы основные положения теории химического строения А. М. Бутлерова. Ученый подробно описал способы синтеза и использования разных реакций. Одним из самых важных тезисов химика было его утверждение о том, что каждому химическому веществу соответствует одна формула. Ее важность заключается в том, что она характеризует все свойства и показывает связь атомов внутри молекул.

Теория Бутлерова также предусматривала, что с помощью управляемых реакций можно производить новые вещества. В последующие годы знаменитый химик и его ученики провели множество экспериментов, чтобы доказать это предположение. Им удалось синтезировать такие новые вещества, как изомеры пентана, изобутилен и некоторые спирты. Для своей эпохи эти открытия имели колоссальную значимость, которую можно сравнить только с важностью определения других элементов Менделеевым (например, экабора).

теория бутлерова

Систематизация химии

В XIX веке основные положения теории Бутлерова полностью изменили представление ученых о строении химических элементов. В частности, исследователь первым предположил, что молекулы являются не хаотическим скоплением атомов. Наоборот, они обладают упорядоченной структурой. Атомы соединены друг с другом в определенной последовательности, от которой также зависит характер всего вещества.

Бутлеров, разрабатывая свою теорию, опирался на математические принципы и законы. С помощью этой науки он смог объяснить большинство процессов и взаимосвязей в химических веществах. Для современников это была настоящая революция. Дело было в том, что даже если ученые и знали некоторые факты о характере определенных веществ, они не могли выстроить свои знания в четкую систематизированную картинку. Основные положения теории строения Бутлерова разрешили эту проблему. Теперь химия была не разрозненной копилкой фактов, а стройной системой, где все подчинялось строгой математической логике.

основные положения теории строения бутлерова

Многообразие веществ

Знаменитая теория Бутлерова много внимания уделяет изомерии – явлению, заключающемуся в существовании изомеров – равных по молекулярной массе и атомному составу веществ, которые в то же время отличаются друг от друга расположением атомов и строением. Эта особенность объясняет многообразие свойств веществ в природе.

Бутлеров доказал свою теорию на примере бутана. Согласно идее ученого, в природе должно было существовать два вида этого вещества. Однако в то время наука знала только один бутан. Бутлеров провел множество экспериментов и все-таки получил новое вещество, похожее по составу, но отличное по свойствам. Оно было названо изобутаном.

основные положения теории химического строения а м бутлерова

Влияние атомов друг на друга

Бутлеров открыл и другую важную закономерность. С образованием химических связей начинается процесс перехода электронов от одних атомов к другим. При этом меняется их плотность. Возникают электронные пары, которые влияют на свойство нового образующегося вещества. Ученый изучал этот феномен на примере хлороводорода, где хлор меняет электронную плотность связей водорода.

Бутлеров и основные положения теории строения смогли объяснить природу трансформации веществ. В дальнейшем принцип, открытый русским химиком, подробно исследовался его последователями и учениками. Осознание механизма изменения веществ позволило ученым понять, как синтезировать новые элементы. Особенный всплеск этих открытий начался в конце XIX века. Тогда европейские и американские ученые в новых лабораториях с помощью методов, которые предложил Бутлеров, смогли произвести новые вещества.

теория строения химических соединений а м бутлерова

Химические связи

Бутлеров считал, что строение веществ можно изучать химическими методами. Это положение подтвердилось благодаря множеству удачных экспериментов ученого. Также исследователь был сторонником идеи о том, что формулы могут быть правильными, только если они станут отражать порядок химических связей разных атомов. Бутлеров занимался анализом этого предположения на протяжении многих лет.

Он выделял три вида связей – простую, двойную и тройную. Ученый был прав, но дальнейшее развитие науки показало, что есть и другие химические связи. В частности, теперь специалисты могут характеризовать их еще и с помощью физических параметров.

бутлеров и основные положения теории строения

Развитие Бутлеровской теории

Новая теория строения химических соединений А. М. Бутлерова по своему характеру была материалистической. Ученый первым смело заявил о том, что исследователям по силам изучить свойства атомов, из которых строятся все элементы. При этом сам Бутлеров относился к своей теории как к временной. Он считал, что его преемники должны развить ее, поскольку она не до конца объясняла некоторые факты химической науки.

Ученый оказался прав. Теория Бутлерова в дальнейшем развивалась в двух направлениях. Первое заключалось в том, что наука смогла определить не только порядок соединения, но и пространственное расположение атомов в молекуле. Так возникла стереохимия. Эта дисциплина стала подробно исследовать пространственное строение молекул. Об этом новом направлении говорил еще сам Бутлеров, хотя он при жизни так и не успел изучить этот теоретический вопрос.

Вторым направлением развития теории ученого стало появление учения, посвященного электронному строению атомов. Это не только химическая, но и физическая дисциплина. Была подробнее исследована сущность взаимного влияния атомов и объяснены причины проявления разных свойств. Именно основные положения теории Бутлерова позволили ученым добиться таких успехов.

fb.ru

5. ЗНАЧЕНИЕ БУТЛЕРОВА И ЕГО ШКОЛЫ. Бутлеров

5. ЗНАЧЕНИЕ БУТЛЕРОВА И ЕГО ШКОЛЫ

Творец структурной теории жил и работал в эпоху бурного подъема революционно-демократической мысли. Материалистические революционные идеи Герцена, Белинского, Чернышевского, Добролюбова помогали русским ученым освобождаться от идеалистических предрассудков и твердо становиться на путь материалистического изучения явлений природы. Став на материалистический путь, эти передовые ученые стихийно развивали диалектические взгляды. Таким был и Бутлеров, воспитанник Казанского университета, где выросли мировые светила науки — Лобачевский и Зинин.

Величайшая заслуга Бутлерова перед человечеством заключается в том, что он, поставив органическую химию на правильный путь и вооружив науку передовой теорией, неизмеримо облегчил работу новых исследователей.

Идя по указанному русским ученым пути и руководясь созданной им теорией химического строения, химики сознательно создают теперь в своих лабораториях органические вещества для удовлетворения возрастающих потребностей общества. Производство красителей, лекарственных, ароматических и взрывчатых веществ, пластмасс, синтетического каучука составляет крупнейшие отрасли химической промышленности.

Все могущество современной синтетической химии обязано своим стремительным ростом замечательной теории великого русского ученого.

Но Бутлеров не ограничился созданием теории. Он первый применил ее для решения проблем органического синтеза. Работы Бутлерова по синтезу новых веществ принесли ему славу крупнейшего химика-синтетика.

Блестящий ряд химических синтезов, проведенных Бутлеровым, навеки вошел в историю химии.

Бутлеров создал школу, обогатившую науку рядом открытий огромного теоретического и практического значения.

Старейшим, а может быть, и крупнейшим по значению научных трудов учеником Бутлерова был Владимир Васильевич Марковников (1838–1904), сын офицера, уроженец Нижегородской губернии. Окончив Александровский институт в Нижнем Новгороде, он в 1856 году поступил в Казанский университет, по окончании которого был оставлен Бутлеровым при университете для подготовки к профессуре, и начал работать в его лаборатории.

Здесь Марковников приготовил свою магистерскую диссертацию «Об изомерии органических соединений». Еще более интересной была докторская диссертация Марковникова «Материалы по вопросу о взаимном влиянии атомов в химических соединениях», вышедшую отдельным изданием в 1869 году.

Марковников вывел закой, управляющий процессом образования сложных органических соединений, и дал на основе его ряд правил, объясняющих, почему возникают в химических соединениях разнообразные свойства.

Марковников доказал, что при соединении двух атомов их свойства в сложном веществе изменяются под взаимным воздействием. Речь идет не о простом сложении двух или нескольких неизменных величин, а о взаимном влиянии атомов, распространяющемся даже на такие атомы, которые непосредственно не связаны друг с другом. Зная это влияние, можно заранее предсказывать, как будут вести себя в различных случаях составные части молекул.

Теория Марковникова научила химиков точно, научно предсказывать течение химических реакций.

В 1869 году Марковников был избран советом Казанского университета на место своего учителя, перешедшего в Петербург, но через год уступил кафедру Бутлерова другому его ученику, Александру Михайловичу Зайцеву, а сам, пробыв около года в Новороссийском университете в Одессе, в 1873 году перешел в Московский университет. В Москве главным образом и развернулась научная и педагогическая деятельность Марковникова, составившая ему мировую известность.

В Московском университете, где до того времени, как указывал К. А. Тимирязев, преподаванию естественных наук, и в частности химии, уделялось очень мало внимания, Марковников прежде всего организовал большую химическую лабораторию как для занятий студентов, так и для исследовательских работ.

Первые годы своего пребывания в Москве Марковников всецело посвятил преподавательской работе, следуя примеру своего учителя.

Академик И. А. Каблуков говорит: «В. В. Марковников с первых же шагов приучал студентов к самостоятельности. В то время почти не было руководства по химии на русском языке и описание способов приготовления различных, даже не особенно сложных соединений нужно было разыскивать в иностранных журналах. Назначив студенту работу, В. В. Марковников давал общие указания о приготовлении указанного соединения, а затем прибавлял: «А подробности о том, как составить прибор и т. п., найдете в «Анналах Либиха». Студенту (в большинстве случаев плохо знавшему иностранные языки) приходилось вооружаться словарем и приниматься за перевод химической статьи. Мы убедились на личном опыте в пользе этого приема для дальнейшей работы: студент сразу видел, что без знания иностранных языков дальнейшее изучение химии невозможно — это первое; второе — с первых шагов своей работы студент приучался к самостоятельным приемам исследования, учась этому по оригинальным статьям больших химиков. Приготовив 5 — 10 несложных препаратов, студент переходил уже к синтезу новых соединений, так что уже на четвертом курсе некоторые студенты получали эти новые соединения — и о них на заседаниях ученых обществ делались сообщения».

О педагогическом таланте Марковникова и его своеобразном подходе к работе по воспитанию молодежи говорит и академик С. С. Наметкин:

«Человек глубоко оригинальный, прекрасный администратор, требовательный и строгий, но справедливый к подчиненным, В. В. Марковников был прекрасным учителем и воспитателем молодого поколения. Правда, он не любил «возиться» со своими практикантами, давая им нередко лишь общие руководящие указания, но он зорко следил за ними, требовал аккуратности и тщательности в выполнении работы и четкости результатов. Известно его образное изречение: «их (то-есть практикантов) надо скорее пускать на глубокое место: кто выплывет, из того будет толк». Бывало, конечно, немало случаев, когда толку не получалось, и в таких случаях В. В. Марковников бывал неумолим».

Высоко оценивая влияние Марковникова на учеников, академик С. С. Наметкин говорит о «марковниковской» школе химиков, к числу которых принадлежат прежде всего почетный академик И. А. Каблуков (Москва), затем академик Н. Я. Демьянов (Москва), почетный академик Н. М. Кижнер (Томск — Москва), профессор А. И. Щербаков (Варшава), профессор А. А. Яковкик (Ленинград), профессор М. И. Коновалов (Киев), профессор А. Н. Шукарев (Харьков), профессор П. П. Орлов (Томск), профессор А. М. Беркенгейм (Москва), профессор Н. И. Курсанов (Москва) и другие.

Следует отметить, что среди работ, вышедших из лаборатории профессора В. В. Марковникова в Москве, была работа Е. Н. Лермонтовой — первой женщины-химика, работавшей в Московском университете.

Создав в Московском университете равный по своему значению с Казанью и Петербургом центр химической мысли, Марковников обратился вновь к научно-исследовательской работе, ознаменовавшейся открытиями огромного теоретического и практического значения. Особенную важность имели его исследования русской нефти.

«Только глубокое понимание теории химического строения, — говорит по этому поводу академик A. Е. Арбузов, — позволило В. В. Марковникову быстро охватить эту совершенно новую и неизученную область органических соединений и понять их главнейшие химические свойства».

В этих работах Марковникова ярко выразилась одна из драгоценных черт русской мысли — стремление к точному знанию для практического его приложения.

С 1880 года В. В. Марковников начинает работать над исследованием кавказской нефти. «Обширная работа по этому вопросу, опубликованная в 1883 году от имени В. В. Марковникова и B. Н. Оглоблина, по широте охвата предмета исследования, по тщательной разработке деталей и по глубине обобщающих выводов до сих пор является непревзойденной и, по справедливости, считается классической, — говорит академик С. С. Наметкин. — Для одного нового типа нефтяных углеводородов здесь мы впервые встречаем термин «нафтены», который вскоре получил общее признание и вошел в международную научную терминологию. Постепенно развиваясь, работы в области исследования состава кавказской нефти, и в частности в области «нафтенов», заняли главное место в тематике В. В. Марковникова и остались таковыми до конца его жизни; они обогатили химию громадным новым и оригинальным экспериментальным материалом первостепенного значения. За свои исследования кавказской нефти В. В. Марковников в 1900 году был удостоен Международным нефтяным конгрессом золотой медали».

Химическое исследование нефти, начало которому положил В. В. Марковников, привело вскоре к появлению новых отраслей нефтяной промышленности. Наиболее важными из них являются получение бензина и так называемый «крекинг» нефти.

Современный колоссальный спрос на бензин удовлетворяется путем «крекинг-процесса», позволяющего получать бензин и из остатков первичной перегонки нефти, то-есть из мазута и соляровых масел, не содержащих бензина.

Однако мало кто знает, что этот процесс, получивший английское название и запатентованный в 1915 году Бартоном, задолго до Бартона, в 1891 году, был предложен и разработан русским инженером-теплотехником Владимиром Григорьевичем Шуховым, получившим тогда же и патент на промышленную «крекинг»-установку.

Стремление к использованию точного знания для практических целей было у Марковникова тесно связано с глубоким и деятельным патриотическим чувством. Он любил повторять перефразированный стих поэта: «Ученым можешь ты не быть, но гражданином быть обязан», и в своих выступлениях по вопросу о связи науки и промышленности говорил:

«Мне всегда было непонятно, почему наши натуралисты не хотят выбрать для своих исследований такой научный вопрос, материалом для которого служила бы русская природа. Тогда мы не были бы свидетелями того, что Россия изучалась прежними нашими профессорами и академиками-иностранцами, да и теперь нередко изучается приезжими иностранцами».

Марковников привлек к работе над исследованием нефти, которой так богата наша страна, многих своих учеников и прежде всего наиболее талантливого из них — Михаила Ивановича Коновалова (1858–1906).

М. И. Коновалову удалось доказать, вопреки существовавшему мнению, что слабая азотная кислота при нагревании в запаянных сосудах способна действовать на «предельные углеводороды», или, иначе, на парафины, с образованием нитросоединений. Это замечательное открытие Коновалова разрушило ту преграду, которая, казалось, существовала между соединениями парафинового и ароматического ряда. По очень меткому выражению самого Коновалова, открытая им реакция нитрования «оживила химических мертвецов», какими до его работ считались парафины, то-есть соединения, лишенные сродства, названные так за их химическую инертность. Правда, много лет реакция Коновалова имела чисто теоретическое значение, но в настоящее время коноваловская реакция нитрования парафинов получила большое практическое значение.

Поразительно то разнообразие соединений, которые могут быть получены и уже получаются в заводских масштабах из продуктов нитрования предельных углеводородов.

Производные нитропарафинов применяются при очистке смазочных масел. Нитропарафины в качестве добавок к дизельному топливу снижают температуру их воспламенения. При взаимодействии нитропарафинов с формальдегидом с последующей обработкой крепкой азотной кислотой получены новые взрывчатые вещества, превосходящие по силе нитроглицерин.

Бутлеровское направление в химии донес до наших дней другой выдающийся ученик Марковникова, почетный академик Иван Алексеевич Каблуков (1857–1942), один из популярнейших деятелей советской науки, учитель многих советских химиков.

По окончании университета в 1880 году Каблуков был оставлен Марковниковым при университете, а в следующем году был направлен им в Петербург, в лабораторию Бутлерова. Результатом этой командировки явилась первая самостоятельная научная работа Каблукова, выполненная «по мысли А. М. Бутлерова», — «Новый способ получения оксиметилена».

Задачей экспериментального исследования Каблукова было найти более доступный метод получения оксиметилена. Ему удалось значительно улучшить метод, предложенный незадолго до этого Гофманом: каталитическое окисление метилового спирта пропусканием его паров с воздухом через нагретую платиновую трубку. Раствор формалина подвергался вымораживанию. Выход оксиметилена был около 8 процентов. Каблуков взял вместо платиновой трубки стеклянную, наполнив ее платинированным асбестом. Полученный раствор он упаривал в вакуум-эксикаторе над серной кислотой. Это дало увеличение выхода вдвое — 17 процентов.

Магистерская диссертация Каблукова посвящена автором памяти Бутлерова. В этой небольшой монографии, посвященной, казалось бы, объекту из области чистой органической химии, Каблуков проявил себя как теоретик, склонный к разработке физико-химических вопросов. Весьма интересна глава его монографии, посвященная истории исследования жиров и получения глицерина. Она заканчивается обсуждением вопроса о строении глицерина. Каблуков показывает, что первую правильную структурную формулу глицерина предложил А. М. Бутлеров еще в 1859 году вопреки неправильной формуле, данной Купером в 1858 году.

В рассмотрении свойств глицерина и его производных проявились физико-химические склонности автора. Химик-органик удовольствовался бы чисто — синтетическими вопросами. Каблуков же уделяет большое внимание физическим и физико-химическим свойствам не только самого глицерина, но и его растворов. Оригинальны его рассуждения о числе теоретически возможных изомеров, исходя из структурной формулы.

Не только воспринял и глубоко прочувствовал Каблуков идеи основоположника структурной теории, но по-своему углубил их в вопросе «О законности, управляющей порядком налегания атомов при реакциях прямого соединения».

«Метод обучения В. В. Марковникова Каблуков применял и в работе со своими учениками, — говорит профессор M. M Попов, — у пишущего эти строки хранится инструкция, выданная ему И. А. Каблуковым при зачислении в группу оставленных при университете. В ней, между прочим, значится: «…лабораторные занятия должны состоять: а) в самостоятельном исследовании какого-либо вопроса (но я не считаю возможным указать, какой вопрос должен быть разработан, так как выбор задачи для самостоятельного исследования должен быть предоставлен М. М. Попову)» и т. д. Такие инструкции вручались всем его ученикам. Не надо думать, что этот метод обучения обрекал юношу на произвол судьбы. Нет, когда надо, И. А. Каблуков умел помочь, поддержать; в этих случаях у него всегда находилось много знаний и много опыта, и все его советы, кроме того, озарялись добротой и внимательностью. В минуты «лабораторных неудач», в минуты тяжелых сомнений, в часы удрученного состояния духа учеников он им напоминал (по крайней мере, со мной это случалось не раз) известные строки И. С. Тургенева из его. речи «Гамлет и Дон-Кихот» и говорил при этом: «Идите гулять, отдохните: в здоровом теле — здоровый дух. Не приходите Гамлетом». В своей долгой жизни, в своем огромном труде И. А. Каблуков всегда оказывался на стороне вечного искания истины, преданности идеалу — «жизни для других, для своих братьев, для истребления зла, для противодействия враждебным человечеству силам». Ему были в высшей степени чужды настроения вечного самоанализа, себялюбия и разъедающего скептицизма».

В мае 1903 года И. А. Каблуков был избран советом Московского университета профессором кафедры химии. После этого он всю свою педагогическую деятельность сосредоточил в двух учебных заведениях: Московском университете и Сельскохозяйственном институте — ныне Тимирязевская сельскохозяйственная академия, где он и работал до конца своей жизни. Основным его курсом являлся курс неорганической химии, впоследствии изданный в виде учебника и выдержавший тринадцать изданий.

Имея за плечами 50–60 лет научно-педагогического стажа, Иван Алексеевич неустанно повторял, что он не только передает свои знания, но и многому учится у инженеров и особенно у молодежи.

Традиции бутлеровской школы в Петербургском университете донес до наших дней непосредственный ученик Бутлерова, Герой Социалистического Труда, академик Алексей Евграфович Фаворский (1860–1945), названный коллективом советских химиков в некрологе, ему посвященном, «прямым наследником и продолжателем школы корифея русской химии А. М. Бутлерова».

Интерес к органической химии у А. Е. Фаворского пробудился довольно рано. Он поставил своей задачей изучение важнейшей группы органических соединений — непредельных соединений. Он открыл изомерные превращения в ряду этих соединений, и с тех пор явления изомеризации стали основной темой его исследований. Важным объектом его теоретических исследований был ацетилен. Углубленные исследования свойств и превращений непредельных углеводородов и их производных привели Фаворского к результатам большой теоретической ценности и огромного практического значения.

Исследования академика Фаворского и его учеников положили начало не только успешному систематическому изучению непредельных углеводородов, но также и вопросам, связанным с проблемой синтетического каучука. Достижения Советского Союза в области производства синтетического каучука стали возможными благодаря трудам А. Е. Фаворского и его ученика — академика Сергея Васильевича Лебедева (1874–1934). Идеи и исследования академика Фаворского послужили основой для создания методов промышленного способа получения синтетического каучука. С. В. Лебедев разработал оригинальный синтез каучука из винного спирта, и этот способ впервые был осуществлен в техническом масштабе у нас в Советском Союзе.

Советские исследователи, не успокаиваясь на достигнутом, продолжали работу в области синтетического каучука — искали замены спирта, на получение которого затрачивается пищевое сырье. Эти исследования имели также целью добиться получения синтетического каучука, более близкого по своим свойствам к натуральному.

Задачи в области синтетического каучука, поставленные перед химической наукой советской химической промышленностью, разрешены благодаря академику Алексею Евграфовичу Фаворскому. Он разработал способ получения изопрена, углеводорода, лежащего в основе сложной молекулы натурального каучука, из ацетилена, получающегося из карбида кальция.

Полимеризация изопрена дала синтетический каучук, который при испытании по своим свойствам оказался значительно более близким к натуральному.

Академик Фаворский совместно с М. Ф. Шостаковским решил также проблему синтеза простых виниловых эфиров. Полученные ими эфиры при известных условиях легко полимеризуются и образуют ряд синтетических смол, что позволяет получать различные ценные продукты. Это достижение открыло широкие возможности применения эфиров в разных отраслях промышленности, в том числе и для получения прозрачных пластических масс.

Продолжая традиции Бутлерова, академик Фаворский посвящал свой талант не только научным исследованиям, но и преподавательской деятельности. Он никогда не запирался в своей лаборатории, а искал общения с жизнью, с советскими людьми и воспитал несколько поколений химиков.

Академик Фаворский состоял бессменным редактором «Журнала общей химии», в 1930 году заменившего собой «Журнал Русского физико-химического общества». Редакторскую работу в обоих журналах он вел более сорока лет.

В сочетании теории с практикой — основа успеха академика Фаворского.

Американский изобретатель Эдисон, услышав о синтезе каучука в СССР, сказал: «Я не верю, что Советскому Союзу удалось получить синтетический каучук. Все это сообщение — сплошной вымысел. Мой собственный опыт и опыт других показывает, что вряд ли процесс синтеза каучука вообще когда-либо увенчается успехом».

Тем не менее опыт советских ученых привел к полному успеху.

Современная химия ставит себе даже более широкие задачи, чем копирование натурального каучука. «Всякая новая форма синтетического каучука, — пишет академик С. В. Лебедев, — приносит с собой новый комплекс свойств, которых нет ни у природного каучука, ни у других синтетических каучуков».

В настоящее время известны самые различные виды синтетических каучуков. Каждый из них имеет свои химические и физические особенности. И некоторые новые свойства синтетических каучуков, например: нефтестойкость, кислотоупорность, повышенная газонепроницаемость, оказались исключительно ценными.

Так от теоретических трудов Бутлерова, связанных с развитием теории химического строения, получения в 1863 году предсказанного теорией строения триметилкарбинола, через изобутилен, диизобутилен, через исследования А. Е. Фаворского над непредельными углеводородами, наконец, исследования над непредельными соединениями С. В. Лебедева тянется одна непрерывная нить до синтетического каучука, говорит академик А. Е. Арбузов, характеризуя казанскую школу химиков и ее мировое значение в науке.

Александр Ерминингельдович Арбузов (род. в 1877 году) — творческий представитель казанской школы химиков, ученик А. М. Зайцева, принявший от своего учителя знаменитую кафедру в Казанском университете в 1911 году.

Александр Михайлович Зайцев, один из старейших и наиболее известных учеников Бутлерова, заместил своего учителя в Казанском университете, как мы уже говорили, в 1870 году и оставался здесь до своей смерти в 1910 году.

«В качестве заместителя А. М. Бутлерова по заведованию химической кафедрой и лабораторией Казанского университета, — говорит о своем учителе А. Е. Арбузов, — А. М. Зайцев сохранил все лучшие традиции бутлеровского периода — любовь к науке, высокую трудоспособность и всегда доброжелательное товарищеское отношение к своим ученикам. Скромность европейски известного ученого была прямо поразительна. Еще в 1885 году он был избран членом-корреспондентом Академии наук. В конце его деятельности А. М. Зайцеву было предложено перейти в Петербург в звании академика, но он не захотел расставаться с казанской лабораторией и отклонил почетное предложение».

Как ученый, А. М. Зайцев является продолжателем теоретических идей и экспериментальных методов Бутлерова, но особенное значение имеет разработанная им экспериментальная техника, благодаря которой он со своими многочисленными учениками получил огромное количество химических соединений, предсказанных теорией химического строения.

Число учеников Зайцева очень велико, и среди них было немало химиков, получивших впоследствии широчайшую известность, таких, как Е. Е. Вагнер, С. Н. Реформатский и А. Е. Арбузов, удостоенный Сталинской премии в 1946 году за серию выдающихся работ в области фосфорно-органических соединений.

Химия органических соединений фосфора весьма обширна и разнообразна и представляет огромный практический интерес для медицины, техники, сельского хозяйства. Академик А. Е. Арбузов является одним из пионеров изучения этого важнейшего класса химических соединений. В этой области он дал много новых соединений, разработав при этом методы получения и превращения этих соединений и исследования их новейшими физико-химическими методами.

Если мы напомним в заключение, что в Варшавский университет традиции бутлеровской школы принес Егор Егорович Вагнер, а до него — другой ученик Бутлерова, Александр Никифорович Попов, что в Харьковском университете много лет работал ученик Н. Н. Зинина — Николай Николаевич Бекетов — и припомним пребывание В. В. Марковникова в Новороссийском университете в Одессе, то легко поймем, каким образом бутлеровское направление в химии превратилось в русскую химическую школу.

Преподавательский талант, искусство экспериментатора, самостоятельная разработка основных теоретических вопросов науки — все это оказало огромное влияние не только на непосредственных учеников Бутлерова, но и на других русских химиков. Все они без изъятия признают, что Бутлеров создал самостоятельную русскую химическую школу, которая признает его своим главой.

Идейное наследство Бутлерова составляет общее достояние отечественной химии.

Рука об руку с В. В. Марковниковым, вплоть до его смерти, работал в Московском университете крупнейший современный химик академик Николай Дмитриевич Зелинский, девяностолетие которого отметила советская общественность в 1951 году. Марковников и Зелинский подняли преподавание химии и научную работу в Московском университете на ту высоту, на какой стояла эта наука в Казанском и Петербургском университетах со времен Бутлерова.

В лаборатории Московского университета, ныне носящей имя Зелинского, Николай Дмитриевич выполнил все свои исследования, принесшие ему мировую славу выдающегося химика-теоретика и блестящего экспериментатора. Еще будучи молодым ученым, Зелинский отдал немало сил изучению химических свойств нефти и синтеза ее производных, имея в виду рациональное использование неисчерпаемых запасов нефти в России. В дореволюционное время, однако, трудно было научным достижениям найти практическое применение. Об этом с горечью напомнил ученый советским читателям в 1949 году, говоря о созданном им противогазе, спасшем сотни тысяч жизней во время первой мировой войны.

«Мысль о необходимости найти поглотитель отравляющих веществ, — писал он, — охватила меня в 1915 году, в то время, когда стало известно, что немцы на реке Ипр в первый раз применили отравляющие газы. Но когда через три месяца противогаз, столь насущно необходимый армии, был мной создан, мне пришлось потратить более полугода на то, чтобы продвинуть его на фронт. Наши войска получили его только в марте 1916 года… Что же говорить о судьбе научных достижений, в практическом применении которых не чувствовалось столь экстренной необходимости!»

В успешном осуществлении планов сталинских пятилеток имели значение многие работы Зелинского и в особенности исследование крекинга нефтяных масел в присутствии хлористого алюминия, исследования балхашского сапропелита, работы в области химии сланцевых масел, изыскания способов активирования древесного и каменного угля, указание новых путей использования запасов глауберовой соли Кара-Богаз-Гола, наконец работы над новыми Методами промышленного производства синтетического каучука.

Интересные и важные результаты получены Зелинским в его работах по структуре белка. Эти исследования, за которые Николай Дмитриевич был удостоен в третий раз Сталинской премии, приближают нас к решению сложнейшей, труднейшей и интереснейшей задачи химии — синтезу белкового вещества. Проведенные Николаем Дмитриевичем исследования белковых веществ по найденному им новому методу расщепления белковых тел показали, что сложная химическая структура молекулы белка отражает многовековый процесс эволюции живых организмов.

Научные открытия Зелинского повлекли за собой организацию в Московском университете специальных лабораторий органического синтеза и химии белка и кафедр химии нефти и органического катализа.

Сочетание теоретических исследований с практическим применением научных достижений в социалистическом строительстве составляет характерную черту научной деятельности Зелинского. Тому же сочетанию теории с практикой он научил многочисленных своих учеников, в числе которых находится и нынешний президент Академии наук СССР — академик Александр Николаевич Несмеянов.

Творческая работа Несмеянова по преимуществу посвящена широкой области химии металлорганических соединений, которую он обогатил новыми методами синтеза. На основе теоретических исследований Несмеянова и его учеников выполнено много работ, имеющих важное практическое значение для народного хозяйства нашей страны.

«В течение всей своей долгой научной жизни, — говорит Н. Д. Зелинский, — я всегда твердо знал и стремился внушить своим ученикам, которых у меня немало — сто пятьдесят из них академики, члены-корреспонденты и доктора, — что в науке коллективное творчество — залог успеха. Ученый должен обладать умением создавать вокруг себя дружный творческий коллектив, заинтересовать людей общим делом. Увлекаться работой самому, уметь заразить своим увлечением окружающих! Не давать ни себе, ни коллективу успокаиваться на достигнутом! Не суживать своих научных интересов и стремлений! Не останавливаться на малом! Всегда итти вперед!»

Живой и действенной силой традиций русской школы химиков, возглавленных Бутлеровым, исполнены эти слова старейшего и виднейшего советского ученого.

К школе Бутлерова принадлежат за малым исключением все русские химики. Такого широкого значения не имел еще ни один из его предшественников. Ему главным образом обязаны мы тем, что, несмотря на неблагоприятные условия для науки в дореволюционной России, русская химия заняла одно из первых мест в мировой науке.

Своими успехами советские химики и советская химическая промышленность в немалой мере обязаны школе русских химиков и ее основателю — А. М. Бутлерову.

Поделитесь на страничке

Следующая глава >

biography.wikireading.ru

Органическая химия и органический синтез

Органическая химия

Органическим синтезом называется получение более сложных органических веществ из менее сложных органических или неорганических веществ. Путём органического синтеза из угля можно получить мыло и уксус, из дерева — шёлк и шерсть, из спирта — каучук. В настоящее время мы широко пользуемся предметами, материал которых изготовляется с помощью органического синтеза. Это — платье, обувь, детали машин, игрушки, лекарства, краски, посуда, женские сумки, пуговицы и многое, многое другое.

Органический синтез — яркий пример великого значения науки, пример того, как человек, вооружённый знанием, подчиняет себе природу, заставляет её служить своим интересам.

Чудесный элемент

Все окружающие нас тела — земля, люди, животные и растения — состоят из химических элементов. Соединяясь друг с другом в различных комбинациях, эти элементы дают большое число разнообразных химических соединений. Среди ста известных химических элементов особое место занимает углерод. Большинство химиков занимается исследованием соединений углерода. Это не случайно. Углерод входит в состав многих химических соединений. Число известных в настоящее время соединений углерода, так называемых органических, уже превысило 3 миллиона и продолжает быстро возрастать (на данный момент их известно более 27 млн. -прим. ред.). Химики сейчас ежемесячно получают более двух тысяч новых соединений углерода. Химических же соединений, в которые не входит углерод, — неорганических — известно гораздо меньше — менее 100 тысяч.

Быстрое развитие химии углерода или, как её обычно называют, органической химии, связано также с тем, что соединения углерода играют особо важную роль в жизни человеческого организма. Атомы углерода легко соединяются друг с другом и с другими элементами; в результате этого могут образовываться чрезвычайно сложные молекулы с очень большим количеством атомов. Эти сложные молекулы, содержащие углерод, составляют основу всех животных и растительных организмов на Земле. Несомненно, что эти молекулы являются основой жизненных процессов и за пределами нашей планеты. Известно, что вселенная состоит из тех же элементов, что и Земля; известно далее, что основой любых жизненных процессов могут быть только очень сложные химические соединения; известно, наконец, что только один углерод может давать очень сложные молекулы. Таким образом, основой жизни, независимо от того, где она находится, могут быть только соединения углерода.

Органическая химия

Органическая химия как наука возникла более ста лет назад. Впервые начал говорить об органических веществах и органической химии шведский химик Берцелиус. Изучая вещества, содержащиеся в растительных и животных организмах, он убедился, что исследовать эти вещества значительно труднее, чем изучать вещества, получаемые из различных минералов и других неживых тел природы. Эти трудности и заставили Берцелиуса выделить изучение органических веществ в особую отрасль химии.

Однако Берцелиус ошибочно считал, что органические вещества принципиально отличаются от минеральных. В своём учебнике химии, вышедшем в 1827 году, он писал, что «...в живой природе элементы повинуются иным законам, чем в безжизненной», что органические вещества не могут образоваться под влиянием обычных физических и химических сил. Поэтому органическую химию Берцелиус определял как «химию растительных и животных веществ, или веществ, образующихся под влиянием жизненной силы».

Такой взгляд Берцелиуса и его последователей — виталистов {от латинского слова «вита» — жизнь) на происхождение органических веществ был глубоко неверным, идеалистическим. Всё последующее развитие органической химии доказало ошибочность взглядов виталистов.

«Жизненной силы» нет

Уже в 1824 году ученик Берцелиуса Вёлер впервые синтезировал, то-есть получил искусственным путём, органическое вещество — щавелевую кислоту. Щавелевая кислота — вещество растительного происхождения. Она находится в больших количествах в водорослях, грибах, лишайниках, папоротниках. Она придаёт кислый вкус всем известному щавелю. Вёлер получил щавелевую кислоту, нагревая неорганический газ дициан с водой. Эта работа Вёлера долгое время оставалась незамеченной. Более того, сам Вёлер не сумел увидеть её принципиального значения. Четыре года спустя, в 1828 году, Вёлер сделал второе открытие. Он показал, что неорганическое вещество циановокислый аммоний легко можно превратить в продукт жизнедеятельности животного организма — мочевину.

Получение мочевины искусственным путём привлекло широкое внимание научного мира. Однако этот факт ещё не мог поколебать веру в таинственную «жизненную силу». Сторонники «жизненной силы» утверждали, что мочевина, как продукт выделения животного организма, не может считаться настоящим органическим веществом, а находится на грани между органическими и неорганическими соединениями. Если ещё можно приготовить искусственно такие вещества, — говорили они,— то это несомненно нельзя сделать по отношению к более сложным органическим веществам.

Однако развитие науки быстро опровергло эти взгляды. Главную роль здесь сыграли бурные успехи органического синтеза. В 1845 году немецкий химик Кольбе получил искусственным путём уксусную кислоту. Эта кислота — органическое вещество. Образуется она при скисании вина и в виде 3—5%-ного водного раствора употребляется в пищу под названием «уксус». Молекула уксусной кислоты состоит из двух атомов углерода, четырёх атомов водорода и двух атомов кислорода. Кольбе получил уксусную кислоту, взяв в качестве исходных веществ древесный уголь, серу, хлор и воду. После синтеза такого типичного органического вещества, как уксусная кислота, стало ясно, что никакой «жизненной силы» не существует, что процесс образования органических веществ подчиняется обычным физическим и химическим законам.

За сравнительно короткий срок был получен ряд других органических кислот, выделявшихся ранее из растений. Это — винная кислота (встречается в винограде), лимонная (в лимонах, апельсинах), янтарная (в незрелом крыжовнике, винограде), яблочная (в большинстве незрелых плодов) и другие. Постепенно химики научились получать и более сложные органические вещества. Так, в 1854 году, когда было установлено, что жиры представляют собой соединения глицерина с различными органическими кислотами (молекулы которых обычно содержат 16—18 углеродных атомов), был получен искусственным путем жир.

Однако до 60-х годов прошлого столетия синтетические работы химиков носили в значительной степени случайный характер. В своих исследованиях химики-органики действовали неуверенно, наощупь; в теоретических вопросах царил разброд. Отражая общее настроение химиков того времени, Вёлер писал: «Органическая химия может в настоящее время кого угодно свести с ума. Она представляется мне дремучим лесом, полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть». Теория значительно отставала от практических успехов органической химии. Отставание же теории в свою очередь препятствовало успешной работе в лабораториях.

Создавшееся в органической химии положение хорошо понимал молодой химик, работавший в лаборатории Казанского университета. Этот химик — Александр Михайлович Бутлеров — сыграл в дальнейшем исключительно важную роль в развитии химии.

Структурная теория Бутлерова

Александр Михайлович Бутлеров

Александр Михайлович Бутлеров (1828—1886).

Александр Бутлеров с детских лет увлекался химией, и когда пришло время поступать в университет, он без колебания выбрал естественное отделение философского факультета. В Казанском университете, куда поступил Бутлеров, преподавали выдающиеся учёные, которые горячо любили химию сами и умели увлечь за собой студенческую молодёжь. Огромное влияние оказал на Бутлерова его учитель — знаменитый химик Николай Николаевич Зинин.

Особенно заботливо относился к Бутлерову гениальный русский математик Николай Иванович Лобачевский, бывший в то время попечителем учебного округа. По рекомендации Зинина, Лобачевского и других учёных Бутлеров был оставлен при университете. Защитив магистерскую, а затем и докторскую диссертацию, Бутлеров в 26 лет стал профессором химии. К 30 годам он был одним из самых образованных химиков своего времени. Уже первые работы A. M. Бутлерова затрагивали очень важные вопросы органической химии.

В 1861 году Бутлеров впервые осуществил синтез сахара, действуя на водный раствор формальдегида (применяемого для протравливания семян и известного под названием «формалин») раствором гашёной извести. Сахара — это сложные органические соединения. Даже такой сравнительно простой сахар, как виноградный, называемый глюкозой, содержит в своей молекуле 24 атома. Сахара относятся к важным для питания человека и животных веществам — углеводам. Из этого ясно, какой выдающийся интерес представлял синтез, сахара.

В том же 1861 году A. M. Бутлеров начал блестящие теоретические исследования, прославившие русскую науку. До Бутлерова учёные думали, что установить, как построены молекулы,— невозможно. Такая задача была объявлена неразрешимой. Любые попытки определить взаимное расположение атомш в молекулах считались безнадёжным занятием. Многие учёные, последователи философа-идеалиста Канта, объявили, что строение молекул является непознаваемой «вещью в себе». Считалось поэтому, что химики должны ограничиться только изучением поведения химических веществ во время реакций и не пытаться проникнуть в тайны строения самих молекул. А между тем накопленный в химии большой фактический материал находился в явном противоречии с такими взглядами.

Ещё в 1853 году при исследовании летучих органических соединений металлов было обнаружено, что различные атомы соединяются друг с другом только по определённым законам. Каждый атом одного вещества способен соединяться только с определённым числом атомов другого вещества. Чтобы сравнивать атомы в этом отношении, рассматривают их способность соединяться с атомами водорода. Есть атомы (например, атомы хлора), способные соединяться не более чем с одним атомом водорода. Атомы серы и кислорода соединяются с двумя атомами водорода, азота — с тремя, а углерода — с четырьмя атомами водорода. Водород может всегда соединяться только с одним атомом какого-либо другого элемента.

Способность атома соединяться с определённым числом атомов другого элемента называется валентностью. Атом хлора может соединиться только с одним атомом водорода, и поэтому хлор считается одновалентным; кислород и сера — двухвалентны, азот — трёхвалентен, углерод — четырёхвалентен. Ниже условно изображены атомы наиболее часто встречающихся в органических соединениях элементов с их валентностями.

Валентность

Глубоко изучив весь этот материал, Бутлеров неопровержимо доказал, что молекулы представляют собой не хаотические скопления атомов, а стройные устойчивые системы, где существует определённый порядок в расположении атомов. В самом деле, молекула воды, например, может быть построена только так, что оба атома водорода соединены с одним атомом кислорода. Никакого другого порядка связи быть не может. Если бы оба атома водорода были прямо связаны друг с другом, то они использовали бы свои валентности полностью и не смогли бы соединиться с кислородом.

Молекула воды

Единственный порядок расположения атомов возможен и для молекулы аммиака, состоящей из одного атома азота и трёх атомов водорода.

молекула аммиака

Точно так же обстоит дело и с метаном, или болотным газом, в котором молекула вещества состоит из одного атома углерода и четырёх атомов водорода.

молекула метана

В молекуле углекислого газа на один четырёхвалентный атом углерода приходится два двухвалентных атома кислорода.

молекула углекислого газа

Химики изображают атомы различными буквами латинского алфавита. Вот современное изображение некоторых элементов: водород — H (аш), хлор — Cl (хлор), кислород О (о), сера — S (эс), азот — N (эн, фосфор — P (пэ). Соответственно, молекулы изображаются следующим образом: вода H—О—H (чёрточки между атомами обозначают валентность), аммиак , метан , углекислый газ О = С = О.

Таким образом, атомы в молекулах расположены в определённом порядке; молекулы обладают определённым химическим строением, которое химик может установить, исследуя вещество. Основную идею своей теории A. M.Бутлеров высказал так: «Исходя из мысли, что каждый химический атом, входящий в состав тела, принимает участие в образовании этого последнего и действует здесь определённым количеством принадлежащей ему химической силы (сродства), я называю химическим строением распределение действия этой силы, вследствие которого химические атомы, посредственно или непосредственно влияя друг на друга, соединяются в химическую частицу».

Установив понятие химического строения, A.M.Бутлеров создаёт новое понятие природы вещества вообще. Он пишет: «Химическая натура сложной частицы (то-есть молекулы) определяется натурой элементарных составных частей (то-есть атомов), количеством их и химическим строением».

Создав понятия химического строения и природы вещества, A.M.Бутлеров вывел органическую химию из теоретического тупика, указал путь к проникновению в глубь молекул, к познанию их внутреннего строения. Он дал основу для понимания химических процессов, для открытия новых путей органического синтеза. Теория Бутлерова сразу же получила боевое крещение, блестяще объяснив ряд вопросов, раньше совершенно непонятных. Следуя за Берцелиусом, химики считали, что свойства вещества могут изменяться только после изменения его состава. Другими словами, если молекула вещества состоит, например, из двух атомов углерода, шести атомов водорода и одного атома кислорода (C2H6O), то никак нельзя ожидать, чтобы нашлось другое вещество, обладающее таким же составом, но другими свойствами.

Однако химики открыли два различных вещества с одинаковым составом: C2H6O. Одно из них было давно известно: это — этиловый или винный спирт — жидкость, кипящая при 78,4°. Другое вещество, открытое значительно позднее,— диметиловый эфир — представляет собой газ с приятным эфирным запахом, превращающийся в жидкость при охлаждении его до минус 23,6°. Два совершенно различных вещества имеют одинаковый состав! Как это можно объяснить? Да ведь всё это совершенно ясно,— решил Бутлеров,— что из того, что состав этих веществ один и тот же? Ведь из одинакового количества строительного материала, например, кирпича, досок, железа, стекла, можно выстроить различные здания. Сходным образом природа построила из двух атомов углерода, шести атомов водорода и одного атома кислорода две различные молекулы, расположив в каждой из них «строительный материал» по-разному.

В молекуле спирта кислород связан с углеродом и водородом, а в молекуле эфира — с двумя атомами углерода. Бутлерову стала ясной тайна огромного многообразия органических соединений. Оказывается, дело не только в том, что углерод способен образовывать длинные цепи. Не менее важная причина заключается в возможности различного расположения атомов в молекулах, обладающих одинаковым составом. Честь открытия и объяснения этого замечательного явления, называемого изомерией, принадлежит Бутлерову.

строение спиртов

Число изомеров — веществ с одинаковым составом, но разным строением — может быть огромным даже для таких веществ, которые в своём составе имеют только два рода атомов — углерод и водород. Так, для гексана, молекула которого состоит из шести атомов углерода и 14 атомов водорода, возможно пять изомеров; уэйкозана, молекула которого состоит из 20 углеродных и 42 водородных атомов, число возможных изомеров равняется 366 319, а у тетраоконтана (40 углеродов и 82 водорода) может быть 62 491178 805 831 изомер!

Молекулы изомеров отличаются друг от друга внутренним расположением атомов, то-есть своим строением, структурой. Свойства органических веществ в первую очередь определяются строением, структурой молекул. Вот почему Бутлеров назвал свою теорию теорией строения, или структурной теорией.

Могущество теории строения

Теория Бутлерова явилась факелом, который отныне стал освещать путь химиков в их практических исследованиях. Бутлеров первый блестяще доказал силу своей теории на практике. Изучая различные бутиловые спирты, содержащие в молекуле четыре углеродных, 10 водородных и один кислородный атом, Бутлеров обратил внимание на расхождение его теории с практикой. Согласно теории Бутлерова, среди различных спиртов этого состава должен быть спирт, который имеет следующее строение:

Однако химики такого спирта не знали. И вот Бутлеров, глубоко веря в правильность своей теории, решил получить этот спирт искусственным путём, наметив план синтеза заранее, подобно инженеру, который, прежде чем конструировать машину, составляет ее чертёж. Упорная работа в лаборатории увенчалась успехом: Бутлеров получил этот изомер; впервые в мире на основании научного предвидения было синтезировано вещество неизвестного ранее класса спиртов. Это открытие можно поставить рядом с научным подвигом Д. И. Менделеева, который не только предсказал существование неизвестных химических элементов, но и точно описал свойства этих элементов задолго до их открытия. В дальнейшем Бутлеров, руководствуясь своей теорией, синтезировал целый ряд других спиртов.

Теперь химикам не нужно было блуждать в потёмках и тратить время на огромное число опытов, поставленных наудачу. Стало возможным работать по заранее намеченному плану. Заслуги Бутлерова перед наукой поистине огромны. В 1868 году, рекомендуя A. M. Бутлерова в Петербургский университет, великий химик Д.И. Менделеев писал: «Бутлеров... путём изучения химических превращений стремится проникнуть в самую глубь связей, скрепляющих разнородные элементы в одно целое, принимает за каждой из них врождённую способность вступать в известное число соединений, а различие свойств приписывает различному способу связи элементов. Никто не проводил этих мыслей столь последовательно... A. M. Бутлеров — один из замечательнейших русских учёных. Он русский и по учёному образованию и по оригинальности трудов. Ученик знаменитого нашего академика H. Зинина, он сделался химиком не в чужих краях, а в Казани, где и продолжает развивать самостоятельную химическую школу. Направление учёных трудов A.M. не составляет продолжения или развития идей его предшественников, но принадлежит ему самому. В химии существуют бутлеровская школа, бутлеровское направление».

Со времени создания теории строения Бутлерова прошло более ста лет. Все эти годы химики руководствовались этой теорией и добились огромных успехов. Теория строения нисколько не устарела; сейчас она так же необходима химикам, как и сто лет назад. Характеризуя успехи органической химии, Фридрих Энгельс ещё в 1894 году писал: «Для химии первой половины нашего (XIX) столетия органические соединения были... таинственными вещами. Теперь нам удаётся одно за другим получить их путём синтеза из химических элементов и без помощи органических процессов. Новейшая химия утверждает: как скоро химический состав какого-либо тела известен, оно может быть составлено из элементов. Нам ещё, правда, очень далеко до точного знания состава высших органических соединений, так называемых белковых; однако нет никакого основания сомневаться, что мы, хотя бы спустя столетия, достигнем этого знания и с его помощью будем добывать искусственный белок. Если мы этого достигнем, то вместе с тем мы воспроизведём органическую жизнь, ибо жизнь от самых низших до самых её высших форм есть не что иное, как нормальная форма существования белковых тел».

Глава из книги О.А. Реутова "Органический синтез"

scientifically.info